Real-Time Background Subtraction Using Adaptive Sampling and Cascade of Gaussians
نویسندگان
چکیده
Background-Foreground classification is a fundamental well-studied problem in computer vision. Due to the pixelwise nature of modeling and processing in the algorithm, it is usually difficult to satisfy real-time constraints. There is a trade-off between the speed (because of model complexity) and accuracy. Inspired by the rejection cascade of ViolaJones classifier, we decompose the Gaussian Mixture Model (GMM) into an adaptive cascade of classifiers. This way we achieve a good improvement in speed without compensating for accuracy. In the training phase, we learn multiple KDEs for different durations to be used as strong prior distribution and detect probable oscillating pixels which usually results in misclassifications. We propose a confidence measure for the classifier based on temporal consistency and the prior distribution. The confidence measure thus derived is used to adapt the learning rate and the thresholds of the model, to improve accuracy. The confidence measure is also employed to perform temporal and spatial sampling in a principled way. We demonstrate a speed-up factor of 5x to 10x and 17 percent average improvement in accuracy over several standard videos.
منابع مشابه
Detecting and counting vehicles using adaptive background subtraction and morphological operators in real time systems
vehicle detection and classification of vehicles play an important role in decision making for the purpose of traffic control and management.this paper presents novel approach of automating detecting and counting vehicles for traffic monitoring through the usage of background subtraction and morphological operators. We present adaptive background subtraction that is compatible with weather and ...
متن کاملRobust Online Matrix Factorization for Dynamic Background Subtraction
We propose an effective online background subtraction method, which can be robustly applied to practical videos that have variations in both foreground and background. Different from previous methods which often model the foreground as Gaussian or Laplacian distributions, we model the foreground for each frame with a specific mixture of Gaussians (MoG) distribution, which is updated online fram...
متن کاملAdaptive Background Mixture Models for Real-Time Tracking
A common method for real-time segmentation of moving regions in image sequences involves “background subtraction,” or thresholding the error between an estimate of the image without moving objects and the current image. The numerous approaches to this problem differ in the type of background model used and the procedure used to update the model. This paper discusses modeling each pixel as a mix...
متن کاملRemoving ECG Artifact from the Surface EMG Signal Using Adaptive Subtraction Technique
Background: The electrocardiogram artifact is a major contamination in the electromyogram signals when electromyogram signal is recorded from upper trunk muscles and because of that the contaminated electromyogram is not useful.Objective: Removing electrocardiogram contamination from electromyogram signals.Methods: In this paper, the clean electromyogram signal, electrocardiogram artifact and e...
متن کاملA Novel Approach to Background Subtraction Using Visual Saliency Map
Generally human vision system searches for salient regions and movements in video scenes to lessen the search space and effort. Using visual saliency map for modelling gives important information for understanding in many applications. In this paper we present a simple method with low computation load using visual saliency map for background subtraction in video stream. The proposed technique i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1705.09339 شماره
صفحات -
تاریخ انتشار 2017